MATH 2050C Lecture on 31612020

[Reminder: PS5 due today, PS6 posted.] Question: Given a seq. (Xn), can we find conditions "(*)" st. (1) (4) \Rightarrow (Xn) convergent? (2) (★)' ⇒ (Xn) divergent? Some examples : (Divergence criteria) (*)': (Xn) unbdd Some examples : (Convergence criteria) (*): Squeeze Thm, or Ratio test, or limit theorems (*): (Xn) bdd & monotone Def": (xn) is monotone if it is either (2) increasing, i.e. XIEXZEXZE (Xn EXnti UnEIN) (ii) decreasing, ie. X1 ? X2 ? X3 ? (Xn ? Xn+1 UneIN) 70 Note: If inequalities above are strict, then we say that it is strictly monotone / increasing 1 decreasing. E.g.) $(X_n) = (n)$ strictly increasing unbdd divergent $(X_n) = (\frac{1}{n})$ strictly decreasing bdd convergent E.g.) necessary Monotone Convergence Thm: (Xn) monotone & bdd => (Xn) convergent Remark: The theorem does NOT compute the limit. Non-e.g. 1) $(x_n) = (n)$ monotone But not bdd, divergent

Non-e.g. 2) $(X_n) = \left(\frac{(-1)^n}{n}\right)$ NoT monotone, bdd, convergent

Proof: Assume (Xn) is increasing & bold.

Idea: Show lim(Xn) = sup [Xn] neiN3

Consider the subset

$$\phi \neq S := \{x_n \mid n \in \mathbb{N}\} \subseteq \mathbb{R}$$
 bold (:: $(x_n) \text{ bold}$)

Completeness of R ⇒ X := sup S ∈ R exists.

Chaim:
$$X = \lim (Xn)$$
.
Pf of Claim: Use def³ of limit. Let $E > 0$.
Since $X = \sup S$, $X - E$ is NOT an upper bd of S.
 $\Rightarrow \exists K \in \mathbb{N}$ s.t. $X - E < X_K \in S$
Since (Xn) is increasing, we have
 $X - E < X_K \leq X_{K+1} \leq X_{K+2} \leq \cdots \leq X_N$ $\forall n \geq K$ (1)
Since $X = \sup S$ is an upper bd of S.
 $Xn \leq X < X + E$ $\forall n \in \mathbb{N}$ [2]
(ambining (1) $B(2)$, $\forall n \geq K$.
 $X - E < X_N < X + E$ $= 0$
Remark: MCT is a very powerful tool to show convergence.
Step 1: use MCT to show $\lim (X_n) =: X$ exists.
Step 2: use other ways (eg. limit thm) to evaluate X.

Example 1 : (Harmonic series)

Let
$$h_n := 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{n}$$
, ne N
so, $h_1 = 1$, $h_2 = \frac{3}{2}$, $h_3 = \frac{11}{6}$,

Show that (hn) is divergent.

Pf: By MCT, (hn) divergent <=> (hn) unbdd (*: (hn) increasing)

Claim: (hn) is unbdd (above)

$$h_{g} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{$$

$$h_{2m} > 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 1 + \frac{1}{2}$$

 $h_{2m} > 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 1 + \frac{1}{2}$
 $h_{2m} > 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 1 + \frac{1}{2}$
 $h_{2m} > 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 1 + \frac{1}{2}$
 $h_{2m} > 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 1 + \frac{1}{2}$
 $h_{2m} > 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 1 + \frac{1}{2}$
 $h_{2m} > 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 1 + \frac{1}{2}$

So, (hn) is unbold, hence divergent.

Remark: MCT is particularly useful to study (Xn) which are defined "recursively".

* Example 2: (Very important)
Let (Yn) be a seq. st.
$$y_{1} = 1$$
 and
reasonate
formula
Show that $\lim(y_n) = \frac{3}{2}$.
Proof: [Observe: $y_1 = 1$, $y_2 = \frac{1}{4}(2\cdot 1+3) = \frac{5}{4}$, $y_3 = \frac{1}{4}(2\cdot \frac{5}{4}+3) = \frac{11}{5}$...]
Claim 1: (Yn) is increasing (i.e. $y_{n+1} \ge y_n + y_1 = \frac{1}{5}$...]
Claim 1: (Yn) is increasing (i.e. $y_{n+1} \ge y_n + y_1 = \frac{1}{5}$...]
Claim 1: (Yn) is increasing (i.e. $y_{n+1} \ge y_n + y_1 = \frac{1}{5}$...]
Claim 1: (Yn) is increasing (i.e. $y_{n+1} \ge y_n$.
Massume $n \ge k + 1$.
 $y_{k+2} := \frac{1}{4}(2\cdot y_{k+1}+3) \ge \frac{1}{4}(2\cdot y_n+3) =: y_{k+1}$.
Claim 2: (Yn) is bdd above by 2.* (i.e. $y_n \le 2 - y_n \in \mathbb{N}$)
Pf: By M.I. When $n \ge 1$. $y_1 = 1 \le 2$.
Assume $y_k \le 2$. Then.
 $y_{k+1} := \frac{1}{4}(2\cdot y_{k+3}) \le \frac{1}{4}(2\cdot 2+3) = \frac{3}{4} \le 2$.
(1) By MCT, $\lim(y_n) =: y$ exists.
Idea: Take the limit on both sides of (*).
 $\lim(y_{n+1} = \frac{1}{4}(2\cdot y_{n+3}))$
 $\lim(y_{n+1} = \frac{1}{4}(2\cdot y_{n+3}))$
(2)
 $\lim(y_n) = \lim(y_{n+1}) = \frac{1}{4}(2\cdot \lim(y_n) + 3) \Rightarrow y = \frac{1}{4}(2\cdot y_{n+3})$
 $\lim(y_{n+1}) = \frac{1}{4}(2\cdot \lim(y_n) + 3) \Rightarrow y = \frac{1}{4}(2\cdot y_{n+3})$
 $\lim(y_{n+1}) = (y_{n+1}) = \frac{1}{4}(2\cdot \lim(y_n) + 3) \Rightarrow y = \frac{1}{4}(2\cdot y_{n+3})$

Example 3: Let (Sn) be a seq. s.t. S1 = 2, and

(#):
$$S_{n+1} := \frac{1}{2}(S_n + \frac{2}{S_n})$$
 $\forall n \in \mathbb{N}$

Show that $\lim_{n \to \infty} (S_n) = \sqrt{2}$.

$$\frac{Proof}{(1)}: (S_n) \text{ is bdd. from below by } \sqrt{2}.$$

$$(1) = \sum_{n=1}^{\infty} S_n^2 - 2 S_{n+1} S_n + 2 = 0 \text{ is a quadratic eq}^2 \text{ in } S_n$$

$$(1) = \sum_{n=1}^{\infty} S_n^2 - 2 S_{n+1} S_n + 2 = 0 \text{ is a quadratic eq}^2 \text{ in } S_n$$

$$(1) = \sum_{n=1}^{\infty} S_n^2 - 2 S_{n+1} S_n + 2 = 0 \text{ is a quadratic eq}^2 \text{ in } S_n$$

$$(1) = \sum_{n=1}^{\infty} S_n^2 - 2 S_{n+1} S_n + 2 = 0 \text{ is a quadratic eq}^2 \text{ in } S_n$$

$$\Rightarrow 4 \operatorname{Suti} - 4 \cdot 2 \Rightarrow 0$$

$$\Rightarrow \operatorname{Suti} \Rightarrow \sqrt{2}$$

Claim 2: (Sn) decreasing (ie Sn+1
$$\leq$$
 Sn $\forall n \in IN$)
Sn - Sn+1 = Sn - $\frac{1}{2}(S_n + \frac{2}{S_n}) = \frac{S_n^2 - 2}{2S_n} \stackrel{>}{>} 0$

____ 0

$$S = \frac{1}{2} \left(S + \frac{2}{5} \right)$$
$$\Rightarrow \qquad S = \sqrt{2}$$

۵

Remark: Since increasing seq. is automatically bdd below . (decreasing) (above) MCT: { increasing + bdd above => conv. decreasing + bdd below => conv.

Proof: Note: NR > K VKEIN. Let E>O. Since lim (Xn) = X, 3 K GIN st. |Xn-x | CE Vn > K. Since NK3K YKEIN, whenever k>K, we will have NK3K>K ⇒ |×n_k-×|< E ∀k ≥ K

0